3.4.54 \(\int \frac {x}{(a+b x)^{5/2}} \, dx\) [354]

Optimal. Leaf size=32 \[ \frac {2 a}{3 b^2 (a+b x)^{3/2}}-\frac {2}{b^2 \sqrt {a+b x}} \]

[Out]

2/3*a/b^2/(b*x+a)^(3/2)-2/b^2/(b*x+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 32, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 1, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {45} \begin {gather*} \frac {2 a}{3 b^2 (a+b x)^{3/2}}-\frac {2}{b^2 \sqrt {a+b x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x/(a + b*x)^(5/2),x]

[Out]

(2*a)/(3*b^2*(a + b*x)^(3/2)) - 2/(b^2*Sqrt[a + b*x])

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin {align*} \int \frac {x}{(a+b x)^{5/2}} \, dx &=\int \left (-\frac {a}{b (a+b x)^{5/2}}+\frac {1}{b (a+b x)^{3/2}}\right ) \, dx\\ &=\frac {2 a}{3 b^2 (a+b x)^{3/2}}-\frac {2}{b^2 \sqrt {a+b x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 24, normalized size = 0.75 \begin {gather*} -\frac {2 (2 a+3 b x)}{3 b^2 (a+b x)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x/(a + b*x)^(5/2),x]

[Out]

(-2*(2*a + 3*b*x))/(3*b^2*(a + b*x)^(3/2))

________________________________________________________________________________________

Mathics [C] Result contains higher order function than in optimal. Order 9 vs. order 2 in optimal.
time = 2.46, size = 34, normalized size = 1.06 \begin {gather*} \text {Piecewise}\left [\left \{\left \{\frac {2 \left (-2 a-3 b x\right )}{3 b^2 \left (a+b x\right )^{\frac {3}{2}}},b\text {!=}0\right \}\right \},\frac {x^2}{2 a^{\frac {5}{2}}}\right ] \end {gather*}

Warning: Unable to verify antiderivative.

[In]

mathics('Integrate[x^1/(a + b*x)^(5/2),x]')

[Out]

Piecewise[{{2 (-2 a - 3 b x) / (3 b ^ 2 (a + b x) ^ (3 / 2)), b != 0}}, x ^ 2 / (2 a ^ (5 / 2))]

________________________________________________________________________________________

Maple [A]
time = 0.09, size = 26, normalized size = 0.81

method result size
gosper \(-\frac {2 \left (3 b x +2 a \right )}{3 \left (b x +a \right )^{\frac {3}{2}} b^{2}}\) \(21\)
trager \(-\frac {2 \left (3 b x +2 a \right )}{3 \left (b x +a \right )^{\frac {3}{2}} b^{2}}\) \(21\)
derivativedivides \(\frac {-\frac {2}{\sqrt {b x +a}}+\frac {2 a}{3 \left (b x +a \right )^{\frac {3}{2}}}}{b^{2}}\) \(26\)
default \(\frac {-\frac {2}{\sqrt {b x +a}}+\frac {2 a}{3 \left (b x +a \right )^{\frac {3}{2}}}}{b^{2}}\) \(26\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(b*x+a)^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/b^2*(-1/(b*x+a)^(1/2)+1/3*a/(b*x+a)^(3/2))

________________________________________________________________________________________

Maxima [A]
time = 0.25, size = 26, normalized size = 0.81 \begin {gather*} -\frac {2}{\sqrt {b x + a} b^{2}} + \frac {2 \, a}{3 \, {\left (b x + a\right )}^{\frac {3}{2}} b^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x+a)^(5/2),x, algorithm="maxima")

[Out]

-2/(sqrt(b*x + a)*b^2) + 2/3*a/((b*x + a)^(3/2)*b^2)

________________________________________________________________________________________

Fricas [A]
time = 0.30, size = 41, normalized size = 1.28 \begin {gather*} -\frac {2 \, {\left (3 \, b x + 2 \, a\right )} \sqrt {b x + a}}{3 \, {\left (b^{4} x^{2} + 2 \, a b^{3} x + a^{2} b^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x+a)^(5/2),x, algorithm="fricas")

[Out]

-2/3*(3*b*x + 2*a)*sqrt(b*x + a)/(b^4*x^2 + 2*a*b^3*x + a^2*b^2)

________________________________________________________________________________________

Sympy [A]
time = 0.39, size = 80, normalized size = 2.50 \begin {gather*} \begin {cases} - \frac {4 a}{3 a b^{2} \sqrt {a + b x} + 3 b^{3} x \sqrt {a + b x}} - \frac {6 b x}{3 a b^{2} \sqrt {a + b x} + 3 b^{3} x \sqrt {a + b x}} & \text {for}\: b \neq 0 \\\frac {x^{2}}{2 a^{\frac {5}{2}}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x+a)**(5/2),x)

[Out]

Piecewise((-4*a/(3*a*b**2*sqrt(a + b*x) + 3*b**3*x*sqrt(a + b*x)) - 6*b*x/(3*a*b**2*sqrt(a + b*x) + 3*b**3*x*s
qrt(a + b*x)), Ne(b, 0)), (x**2/(2*a**(5/2)), True))

________________________________________________________________________________________

Giac [A]
time = 0.00, size = 34, normalized size = 1.06 \begin {gather*} \frac {2 \left (-3 \left (a+b x\right )+a\right )}{b\cdot 3 b \sqrt {a+b x} \left (a+b x\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x+a)^(5/2),x)

[Out]

-2/3*(3*b*x + 2*a)/((b*x + a)^(3/2)*b^2)

________________________________________________________________________________________

Mupad [B]
time = 0.03, size = 20, normalized size = 0.62 \begin {gather*} -\frac {4\,a+6\,b\,x}{3\,b^2\,{\left (a+b\,x\right )}^{3/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(a + b*x)^(5/2),x)

[Out]

-(4*a + 6*b*x)/(3*b^2*(a + b*x)^(3/2))

________________________________________________________________________________________